
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2006

Kinematics of curved flexible beam
Saurabh Jagirdar
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Jagirdar, Saurabh, "Kinematics of curved flexible beam" (2006). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2572

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

Kinematics of Curved Flexible Beam 

 
 
 
 

by 
 
 
 
 

Saurabh Jagirdar 
 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Mechanical Engineering 
Department of Mechanical Engineering 

College of Engineering  
University of South Florida  

 
 
 
 

Major Professor: Craig P. Lusk, Ph.D. 
Rajiv Dubey, Ph.D. 
Autar K. Kaw, Ph.D. 

 
 
 

Date of Approval: 
October 26, 2006 

 
 
 
 

Keywords: Compliant mechanisms, Pseudo-rigid-body, Spherical, 
MEMS, Out of plane 

 
 
 
 

© Copyright 2006, Saurabh Jagirdar 



www.manaraa.com

Dedication 

Dedicated to my parents and my major professor. 



www.manaraa.com

 
 
 
 
 

Acknowledgement 

 
I wish to express my gratitude to everyone who contributed to 

making this thesis a reality. I must single out my professor Dr. Craig 

P. Lusk who supported and guided me right from the beginning to 

bring this thesis to fruition. 

I also want to thank my supervisory committee Dr. Rajiv Dubey 

and Dr Autar K. Kaw and all other professors for their encouragement 

and guidance. 

I am especially grateful to our department staff Ms Susan 

Britten, Ms Shirley Tervort and Mr. Wes Frusher who helped me 

through all the official procedures and setting up our compliant 

mechanisms laboratory. 

I thank Ms Cherine Chehab from the College of Engineering, USF 

to edit and improve the format of the thesis.  

I am indebted to Mr Prateek Asthana of CSEE, Dept, USF to help 

me generate large number of input files by writing just one program. 

This program saved me enormous amount of time that it would have 

taken to generate them one by one.  

I thank my friends and colleagues of the Mechanical engineering 

department and other departments for making my life fun and also 



www.manaraa.com

helping me through various ways, a special reference to Daniel Vilceus 

who continuously kept me pepped up with his sense of humour, Hari 

Patel, John Daly, Shantanu Shevade, Aditya Bansal, Cesar Hernandez 

and Son Ho. 

I also thank my laboratory mates Joe, Alex, Diego, Sebastian, 

Patricia and Issa for their help and support.  

I am deeply indebted to my roommates Dr Apurva Panchal and 

Phaninder Injeti for their patience to bear and take all my 

eccentricities and help me through my tough times. 

I once again thank the Mechanical Engineering Department., the 

College of Engineering and University of South Florida, Tampa Florida. 



www.manaraa.com

i 

 
 
 
 
 

Table of Contents 

 
List of Tables  ii 
 
List of Figures  iii 
 
Abstract   vi 
 
1. Introduction 1 

1.1 Scope 2 
1.2 Background 4 
1.3 Roadmap 15 
 

2. Methodology and Model Development 16 
2.1 Correspondence between spherical and planar PRBMs 16 
2.2 Kinematics of compliant circular arc 18 
2.3 Spherical kinematics of the pseudo-rigid-body model 21 
2.4 Spherical loading condition analogous to planar  
 vertical end load 23 
 

3. Finite Element Analysis (FEA) 24 

4. Parametric Approximation of the Curved Beam’s Deflection Path 33 

5. Results and Discussion 40 

6. Conclusion 50 

References 51 

Appendices 56 
Appendix A Spherical Triangles and Napier Rules 57 
Appendix B Manual for FEA 62 
Appendix C Algorithms to Find γ 100 
Appendix D Summary 119 



www.manaraa.com

ii 

 
 
 
 
 

List of Tables 

 
Table 1: Spherical PRBM 119 
 
Table 2: Planar PRBM 120 
 



www.manaraa.com

 iii

 
 
 
 
 

List of Figures 

 
Figure 1: A PRBM for a cantilever beam with a vertical end load 

(Howell 2001) 7 
 
Figure 2: Planar Mechanism with sliders moving on perpendicular 

straight lines 9 
 
Figure 3: Spherical mechanism with sliders moving on  

perpendicular circular arcs 10 
 
Figure 4: Geodesics 11 
 
Figure 5: Parallel transport (Henderson 1998) 13 
 
Figure 6: Parallel transport along the same longitude 14 
 
Figure 7: Relationship between existing planar PRBM and the 

spherical PRBM developed in this work 17 
 
Figure 8: Reference frames describing the motion of the end of a 

compliant circular cantilever 20 
 
Figure 9: The pseudo-rigid-body model of the compliant curved 

beam 22 
 
Figure 10: Path followed by beam the dotted line from Q to Q’’ 25 
 
Figure 11: Reference frames used to model the spherical  

mechanism and its planar equivalent 26 
 
Figure 12: Cross-section of beam for various aspect ratios 29 
 
Figure 13: Finite element model 30 
 
Figure 14: Deflection of curved segment  35 
 
Figure 15: Deflection of PRBM 37 



www.manaraa.com

 iv

Figure 16: Final position of beam from fixed end α, v/s input 
displacement β   41 

 
Figure 17: Deflection of beam about neutral axis, θ0,v/s input 

displacement β 41 
 
Figure 18: γ v/s Arc-lengths showing various colors for aspect  

ratios 42 
 
Figure 19: CΘ v/s Arc-lengths showing various colors for aspect ratios43 
 
Figure 20: Θmax v/s Arc-lengths showing various colors for aspect 

ratios 43 
 
Figure 21: γ  v/s Arc-lengths, for 200 load-steps of input  

displacement 45 
 
Figure 22: CΘ v/s Arc-lengths, for 200 load-steps of input 

displacement   46 
 
Figure 23: Θmax v/s Arc-lengths, for 200 load-steps of input 

displacement 47 
 
Figure 24: Trend-line of γ,  for aspect ratio 0.1 48 
 
Figure 25: Trend-line of γ, for aspect ratio 0.4 48 
 
Figure 26: Trend-line of γ, for aspect ratio 0.7 49 
 
Figure 27: Spherical triangles 57 
 
Figure 28: Five parts arranged in order of occurrence 58 
 
Figure 29: Spherical right triangle 59 
 
Figure 30: Five parts for PRBM right spherical triangle 60 
 
Figure 31: Activating Graphical User Interface (GUI) 62 
 
Figure 32: Limiting the GUI options to structural preferences 63 
 
Figure 33: Adding or defining new element types  64 
 



www.manaraa.com

 v

Figure 34: Beam elements 65 
 
Figure 35: Defining real constants for respective elements 66 
 
Figure 36: Inputting area and moment of inertia values to elements 67 
 
Figure 37: Defining material properties 68 
 
Figure 38: Creating key-points on work-plane through GUI 69 
 
Figure 39: Creating key-points using command line 70 
 
Figure 40: Pan, zoom, rotate 71 
 
Figure 41: Defining of orthogonal triad at beam end  72 
 
Figure 42: Creating lines 73 
 
Figure 43: Creating arcs 74 
 
Figure 44: Meshing 75 
 
Figure 45: Mesh attributes for line 76 
 
Figure 46: Allocating specific material to mesh (elements) 77 
 
Figure 47: Selecting analysis type 78 
 
Figure 48: Large displacement analysis selected 79 
 
Figure 49: Equation chosen solvers 80 
 
Figure 50: Applying loads to the beam 81 
 
Figure 51: Solve 82 
 
Figure 52: During solve 83 
 
Figure 53: Output 84 
 
Figure 54: To get the log-file 85 



www.manaraa.com

vi 

 
 
 
 
 

Kinematics of Curved Flexible Beam 

Saurabh Jagirdar 

ABSTRACT 

Compliant mechanism theory permits a procedure called rigid-

body replacement, in which two or more rigid links of the mechanism 

are replaced by a compliant flexure with equivalent motion. Methods 

for designing flexure with equivalent motion to replace rigid links are 

detailed in Pseudo-Rigid-Body Models (PRBMs). Such models have 

previously been developed for planar mechanisms. This thesis 

develops the first PRBM for spherical mechanisms.  

In formulating this PRBM for a spherical mechanism, we begin by 

applying displacements are applied to a curved beam that cause it to 

deflect in a manner consistent with spherical kinematics. The motion of 

the beam is calculated using Finite Element Analysis. These results are 

analyzed to give the PRBM parameters. These PRBM parameters vary 

with the arc length and the aspect ratio of the curved beam. 
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1. Introduction 

 
Mechanisms have been defined as “mechanical devices for 

transferring motion and/or force from a source to an output” (Erdman 

et al. 2001). Mechanisms form an important part of how our modern 

society interacts with the world, whether it is the steering wheel, the 

computer keyboard, or even the handle of a door. Most mechanisms 

are systems of levers, cams and gears, which move and rotate, and 

which have rigid parts. Compliant mechanisms are mechanisms that 

“gain some or all of their ability to move from the deflection of flexible 

segments” (Salamon 1989). In compliant mechanisms, individual parts 

not only move and rotate, but also undergo elastic deformations in 

response to the forces which are imposed on them. Some common 

compliant mechanisms are binder clips, paper clips, backpack latch, 

lid, nail-clippers, etc. Compliant mechanisms can have improved 

performance, lower costs and greater potential functional integration 

when compared with rigid-body mechanisms (Her 1986, Sevak and 

McLarman 1974). 
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1.1 Scope 

Compliant mechanism theory permits a procedure called rigid-

body replacement, in which two or more rigid links of the mechanism 

are replaced by a compliant flexure with equivalent motion (Howell 

2001). Methods for designing flexure with equivalent motion to replace 

rigid links are detailed in Pseudo-Rigid-Body Models (PRBMs). In many 

texts, (Boettama and Roth, Mc Carthy 2000), rigid body analysis of 

synthesis techniques have been classified as planar, spherical and 

spatial according to the type of vector algebra used to describe the 

mechanisms. In a planar mechanism, the path of any single part of a 

link lies in a plane and in a spherical mechanism, the path of any 

single part of a link lies on the surface of a sphere. 

Numerous PRBMs have been developed for planar mechanisms 

by Midha et al (1992, 2000), Howell and Midha (1994a, 1994b, 1995) 

Saxena and Kramer (1998), and Dado (2001) and used in applications 

such as Microelectromechanical Systems (MEMS) (Baker et al. 2000, 

Hubbard 2005, Ananthasuresh et al, 1993, Ananthasuresh and Kota 

1996, Jensen et al. 1997, Salmon et al. 1996 and Kota et al. 2001), 

prosthetics (Guerinot et al. 2004), clutches (Roach et al. 1998, Crane 

et al. 2004), micro-bearings (Cannon et al. 2005), constant-force 

mechanisms (Millar et al. 1996), parallel mechanisms (Derderian et al. 

1996), and bi-stable mechanisms (Jensen et al. 1999) and used in 
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various other applications like thermal and electrical actuating 

mechanisms for MEMS (Brocket and Stokes (1991) and Saggere and 

Kota (1997)). Thus, extensive research has been done on planar 

compliant mechanisms using PRBMs.  

A prime advantage of compliant mechanisms is the part count 

reduction, that is, flexures can replace rigid links and reduce the 

number of joints (Howell 2001). This plays a significant role in the 

fabrication of MEMS. In MEMS design, the increase in the number of 

joints directly increases the complexity to manufacture MEMS. (Howell 

2001). Compliant mechanisms also have increased precision, increased 

reliability, reduced weight and reduced maintenance (Howell 2001). 

These advantages make compliant mechanisms ideal for MEMS design 

and hence the applications for MEMS using compliant mechanisms are 

abundant. 

The PRBM concept has been particularly fruitful in the design of 

surface micro-machined MEMS. Surface micromachining is less 

expensive and more versatile than alternative forms of fabrication 

(Howell 2001). For these reasons much of current MEMS research is 

devoted to this technique. But MEMS designs, fabricated by surface 

micro-machining are limited to moving back-and-forth and side-to-side 

(two dimensional motion) i.e. surface micro-machined devices are 

essentially flat (or in-plane or planar). For applications that need a 
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micro mechanism that rotates out of the plane of fabrication with an 

in-plane rotational input, or that rotates spatially about a point, 

existing planar compliant mechanisms are not suitable. Given that all 

current PRBMs relate compliant mechanisms to planar rigid-body 

mechanisms, we are led to ask is it possible to derive PRBMs that 

relate compliant mechanisms to spherical rigid-body mechanisms. No 

such PRBMs have been developed for spherical mechanisms. It is 

anticipated that the description of compliant spherical mechanisms 

with spherical motion will simplify the design of MEMS with out of 

plane motion.  

In this thesis, the first PRBM for a spherical compliant 

mechanism is developed. The kinematics of a curved flexure with the 

equivalent of a vertical end load is studied and a spherical PRBM for a 

curved cantilever beam is developed by approximating the motion of 

the compliant flexure as an equivalent rigid-body mechanism. 

 

1.2 Background 

The motion of rigid-body mechanisms can be analyzed with 

matrix algebra (McCarthy 2000) or other techniques and more 

sophisticated techniques are required for spherical mechanisms than 

planar mechanisms. The analysis of the motion of compliant 

mechanisms, on the other hand, usually requires the solution of 
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differential equations, which describe the physics of an infinitely thin 

section of the mechanism (Frisch Fay 1962). Because the terms planar 

and spherical describe the gross motion of objects of finite size, it is 

not obvious a priori when or if these terms apply to compliant 

mechanisms. However, a compliant mechanism may be termed as 

planar or spherical mechanism when the solution of its governing 

differential equations can be reasonably approximated with rigid-body 

mathematical techniques i.e. matrix algebra. To convert the solution 

method of a compliant mechanism from a differential equation 

approach to an algebraic approach, a number of assumptions and 

specifications need to be made. The differential equation gives 

information about the relationships of a continuous series of points in 

the mechanism; the algebraic equation gives information about a few 

specific points. Thus, the transition requires the specification of the 

points of interest, typically the ends of the flexible segment. The 

solution to the differential equations requires that boundary conditions, 

i.e. information about applied loads and displacements, be specified 

(Howell 2001). Thus, the conversion to an algebraic solution is valid 

only for the specific loading conditions. These restrictions usually are 

placed on loading directions rather than magnitudes (Howell 2001). A 

validated and accurate identification between a spherical compliant 
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mechanism and a rigid-body mechanism with equivalent motion at the 

points of interest is a spherical PRBM. 

The PRBM consists of diagrams and equations describing the 

flexible member and gives a rigid-link equivalent of the compliant 

mechanism which has the same motion and flexibility for a known 

range of motion and to a known mathematical tolerance. A PRBM can 

be used to perform analysis (i.e. given a compliant flexure, its motion 

can be found by treating it as the rigid body) or design (given a 

particular desired motion, a rigid body mechanism that performs the 

motion can be found, and the PRBM can be used to convert that rigid-

body mechanism into a compliant mechanism). The creation of a PRBM 

entails steps beyond the typical mathematical analysis of motion of the 

compliant segment. These additional steps are necessary to find a 

simple and accurate rigid-body approximation of the motion of the 

compliant segment. Once that rigid-body approximation has been 

identified, it is optimized and validated so that its range of applicability 

and level of error is known and acceptable. This identification step 

requires proposing a topology for the rigid-body mechanism, i.e. 

specification of the number of links and joints. The optimization and 

validation of steps involve using a numerical optimization routine that 

insures that the rigid body approximation has a tolerable error (less 

than 0.5%) over as large a range of motion as possible. The creation 
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of such PRBMs is justified because they are easy to use in design and 

because the use of the PRBM in connection with rigid-body synthesis 

techniques produces compliant mechanism configurations that are 

unlikely to be produced in any other way. An example of this approach 

is the PRBM for a straight cantilever beam with vertical end load 

(Howell 2001), which associates motion of a compliant flexure with a 

rigid-link mechanism as shown in Figure 1. Figure 1(a) shows a 

straight cantilever beam subjected to a vertical end load F. Figure 1(b) 

shows the pseudo-rigid-body equivalent of the straight cantilever 

beam. The distance from the fixed end to the beam end in the x-

direction is a, the distance from the fixed end to the beam end in the 

y-direction is b, length of the straight beam is l , Θ is the pseudo-

rigid-body angle and γ is the characteristic radius factor. The angle of 

inclination of the beam at the beam end is given by θ0. 

 

(a) Compliant                               (b) PRBM equivalent 

Figure 1: A PRBM for a cantilever beam with a vertical end load (Howell 2001) 
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The co-ordinates of the beam end of the compliant beam are 

given in terms of the PRB angle, Θ, as: 

)]cos1(1[ Θ−−= γla                                                         (1.1) 

Θ= sinlb γ                                                                      (1.2) 

Where γ=0.85 for a vertical end load. 

The relationship between Θ and θ0 is given by: 

Θ= 24.10θ                                                                        (1.3) 

These relations are accurate to less than 0.5% error for 

Θ<64.3o. 

These rigid-body link equations help us to calculate the precise 

motion of the compliant cantilever i.e. for a given pseudo-rigid-body 

angle, Θ, we can calculate the final co-ordinates of the beam end from 

the fixed end, a in the x-direction and b in the y-direction. We can also 

calculate the angle of inclination of the beam, θ0. 

There are analogies between planar mechanisms and spherical 

mechanisms that make it possible to develop a spherical PRBM from 

the planar PRBM of a cantilever with a vertical end load. A key 

component of the analogies between planar and spherical mechanisms 

is that straight lines in planar mechanisms become great circles or 

circular arcs in spherical mechanisms (Chiang 1992). Also, angles 

between lines become angles between planes (containing great 
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circles). For example, a planar mechanism may have an input in the y-

direction and an output in the x-direction as shown in Figure 2. 

               

Figure 2: Planar Mechanism with sliders moving on perpendicular straight 

lines 

The analogous spherical mechanism will travel on two 

perpendicular circular arcs Y-direction (equivalent of y direction) and 

an output in the X-direction (equivalent of x-direction) as shown in 

Figure 2 as shown in Figure 3. 
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Figure 3: Spherical mechanism with sliders moving on perpendicular circular 

arcs 

 

Note that spherical mechanisms whose size is very small 

compared to the radius of the sphere closely approximate planar 

mechanisms. In fact, spherical kinematics is identical to the planar 

kinematics in the limiting case when the radius of the sphere is 

infinite. 

We are also motivated by the ideas that relate planes and 

spheres such as the stereographic projections used by cartographers 

to represent a spherical earth on a flat map or the mathematical 

identification between the complex plane and the Riemann sphere 

(Frankel 1997). Let us divide the sphere S just like the earth into 

latitudes, longitudes and equator. All longitudes and the equator are 

great circles (WordNet 2001). Great circles are circles that have the 
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same radius as the sphere and define a plane which cuts the sphere 

into two equal halves (Merriam-Webster Dictionary 2006). For example 

great circles on the surface of the earth have their radius equal to the 

radius of the earth. A great circle is also the shortest path between 

any two points on the surface of a sphere. The shortest line between 

two points on a mathematically defined surface is called a geodesic 

(Henderson 1998). A geodesic is a straight line on a plane and a great 

circle on sphere. On a sphere all and only great circles are geodesics 

(on the earth only longitudes and the equator are great circles 

(geodesics), latitudes other than the equator are not great circles and 

hence latitudes (except the equator) are not geodesics). Thus a great 

circle on a sphere is analogous to a straight line on a plane.  

                 

(a) Geodesic on a plane  

Figure 4: Geodesics 

 

                 



www.manaraa.com

 12

 

 

 

 

 

 

 

 

 

 

(b) Geodesic on a sphere 

Figure 4: (Continued) 

Figure 4(a) shows the shortest path p between A and B, on a 

plane. Figure 4(b) shows the shortest path p between A and B, on a 

sphere. Moreover, on a sphere because “straight” lines are great 

circles (curved), there are no parallel lines. ‘Parallelism’ does not exist, 

that is, all great circles intersect on a sphere. Parallel transport on a 

sphere is an analogous concept to parallel lines on a plane. Lines that 

intersect a geodesic (great circles) with the same angle are parallel 

transports (Henderson 1998). 
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Figure 5: Parallel transport (Henderson 1998) 

We use parallel transport to understand how forces and 

displacements should be applied to a spherical mechanism in a way 

that is analogous to a vertical displacement in a planar mechanism. In 

spherical mechanisms, force and velocity vectors in a particular 

tangent plane should continue to be tangent to the sphere and follow 

the motion of the mechanism. Hence the force and velocity vectors 

need to change direction as the mechanism moves. On a sphere, 

different tangent planes have different normal vectors. For the force 

and velocity vectors to be in the tangent plane, any normal component 

of the vector must be removed. Parallel transport of a vector along a 

longitude (great circle) can be found by copying the original vector and 

removing the normal component (Henderson 1998).  



www.manaraa.com

 14

A vector m is parallel transported along a longitude to obtain a 

vector n as shown in Figure 6. 

 

Figure 6: Parallel transport along the same longitude 

All longitudes make the same angle with the equator (geodesic) 

(Henderson 1998). Thus, all longitudes are parallel transports of each 

other. At any point in the northern hemisphere, all vectors pointing to 

the North Pole will lie on longitudes, thus any vector in the northern 

hemisphere and pointing towards the North Pole is a parallel transport 

of any other such vector. Thus, a northward-pointing force-vector on 

the equator of a sphere can be parallel transported to a vector pointing 

north at any other point on the sphere. A vector pointing north on a 

sphere is analogous to a vertical force in a plane. 
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1.3 Roadmap 

This chapter has presented background on PRBMs and spherical 

kinematics, Later chapters describe, how the spherical PRBM is 

modeled, analyzed and validated. Chapter 2 describes the analogy 

between planar PRBM and a spherical PRBM. It also gives the 

nomenclature and topology for the spherical PRBM. Chapter 3 

describes the finite element model and how the displacements were 

applied to the model. Chapter 4 describes how the data was used to 

obtain the values for the PRBM parameters given in the second 

chapter. Chapter 5 describes the results obtained for different aspect 

ratios, b/h and arc lengths, λ. Chapter 6 is the conclusion based on the 

results. 
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2. Methodology and Model Development 

 
2.1 Correspondence between spherical and planar PRBMs 

Mechanisms whose joint axes are parallel to each other are 

known as planar mechanisms (Chiang 1992). In planar compliant 

mechanisms, this characteristic is usually achieved by designing 

straight cantilevers (flexures) that, at each point along their length, 

are most flexible about parallel lines and considerably more rigid in 

other directions. Mechanisms whose joint axes intersect at a point are 

spherical mechanisms (Chiang 1992). In spherical compliant 

mechanisms, this characteristic can be achieved by designing curved 

cantilevers (flexures) that, at each point along the arc, are most 

flexible about lines that point to the centre of the sphere. In both kinds 

of mechanisms it is necessary that the length (arc-length) of flexure 

be much greater than the width of the beam (flexure), and the width 

of the beam to be larger than its thickness.  

It is hypothesized that a flexure which is a long, thin circular arc 

will move in a manner consistent with spherical kinematics when 

loaded appropriately. The process of obtaining the PRBM for a 



www.manaraa.com

 17

spherical compliant mechanism is similar to planar compliant 

mechanism.  

 

Figure 7: Relationship between existing planar PRBM and the spherical PRBM 

developed in this work 

The spherical compliant mechanism and its rigid body 

counterpart are derived from the planar mechanism by making 

straight lines curved. There is a correspondence principle between 

spherical PRBMs and planar PRBMs. The correspondence principle is 

that when small angle assumption is used for spherical arcs. i.e. the 

arc length is much smaller than the radius of the sphere, the spherical 

PRBM becomes identical to planar PRBM. To emphasize the 

relationship between lines and arcs, the lengths in planar model are 

denoted with Roman letters, and the equivalent arcs in the spherical 

model are denoted with the Greek letter equivalents. For example the 
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arc length, β, that appears in some formulas for spherical 

mechanisms, can be related to the planar length, b. Thus, using small 

angle approximation. 

b→=
=

ββ
β

sin
,1cos

 

Where b is the planar equivalent of the arc β. Similarly a and 

l are the planar equivalent of arcs α and λ respectively. 

Additionally, similar terminology is used in planar and spherical 

PRBMs, for angles between lines (arcs) such as Θ, θ0, and for ratios 

such as γ and Cθ. These variables do not change in the small angle 

case. In the planar case, the deflected angle of beam end, θ0, is about 

an axis normal to the plane. Similarly, in the spherical case, the 

deflection of the beam end, θ0, is about an axis normal to the tangent 

plane to the sphere at the beam end. 

 

2.2 Kinematics of compliant circular arc 

The kinematics of the compliant circular cantilever, PQ, is 

described by using a series of co-ordinate frames, as shown in Figure 

8. The fixed end of the curved cantilever beam is denoted as P and 

free end of the beam as Q. Let S be a sphere whose center is defined 

by O frame and the frames A, B, C and D are always on the surface of 
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the sphere.  The position and orientation of the co-ordinate frames are 

related as follows: 

The O frame is a fixed frame that locates the center of the 

sphere. 

The A frame is a frame that locates the beam end Q, in un-

deflected co-ordinates with neutral axis of beam at Q is parallel to the 

a3 direction and the a1 direction is outward radial vector through the 

beam end.  

The B frame is a frame that locates the deflected position of the 

beam end Q in the x-z plane (analogous to the translation in the x-

direction in the planar model). 

The C frame is a moving frame that describes movement of 

beam end Q in the b2-b1 plane rotating about point O (analogous to 

the translation in the y-direction in the planar model).  

The D frame is a moving frame at the same position as the C 

frame and tracks the deflection of the beam end about the radial axis 

through the beam end (analogous to the deflection about the z-axis in 

the planar model). 
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Figure 8: Reference frames describing the motion of the end of a compliant 

circular cantilever 

The frames are described by the matrices A, B, C and D, where 

the columns of the matrix are the basis vectors. The transformations 

relating the frames are given by: 

⎥
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The transformations relating the frames are given by: 

AaRbRcRD ),ˆ(),ˆ(),ˆ( 2301 Φ−= βθ
 

Thus the motion of the cantilever beam is described by the 

parameter Φ=λ-α, β and θ0 which are analogous to planar parameters 

l-a, b and θ0, respectively which are shown in Figure 1. 

 

2.3 Spherical kinematics of the pseudo-rigid-body model 

Now by analogy to the planar PRBM, in the spherical PRBM, Θ is 

defined as the pseudo-rigid-body angle of the beam end about the 

characteristic-pivot (pseudo-pivot) and γ is defined as the ratio of the 

arc length from the beam end to the pseudo-pivot to the entire arc 

length λ of the beam. The value of γ is chosen so that the motion of 

the beam end closely approximates the motion of the compliant beam. 

The details of selecting the value of γ are explained in chapter 4. 

Thus the proposed topology for the pseudo-rigid-body model is 

shown in Figure 9. 
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Figure 9: The pseudo-rigid-body model of the compliant curved beam 

The relationships for α and β in terms of γ and Θ are obtained 

using Napier rules for right spherical triangle (Spiegel, 1968). The right 

spherical triangle in Figure 9 has sides γλ, η, and β (See Appendix A) 

where 

λγαη )1( −−=   

Thus we find η as a function of γλ and Θ 

)cos(tantan
)90tan(tan)90sin(

1 Θ=

−=Θ−
− γλη

γλη

                                         (2.1) 
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And α is obtained as 

)cos(tantan)1(
)1(

1 Θ+−=

+−=
− γλλγα

ηλγα
                                        (2.2)  

Also β is obtained as a function of γλ and Θ    

)sin(sinsin
sinsinsin

1 Θ=

Θ=
− γλβ

γλβ

                                                      (2.3) 

 

2.4 Spherical loading condition analogous to planar vertical end 

load 

Based on the discussion in chapter 2, the spherical equivalent of 

a vertical end load is northward-pointing end-load. An important 

distinction between planar and spherical loading conditions is that the 

planar load direction is constant; the spherical load direction must 

change. A vertical end load in the planar case always points upward, 

on a sphere there is no such one direction to which the load vector 

points. The direction of the force vector should change as the 

mechanism moves along the curvature of the sphere. In practice the 

change requires that any component of force in the direction normal to 

the sphere must be removed, perhaps by addition of load bearing 

members in the mechanism. Thus, at any other point on the sphere 

the vector initiating from that point and pointing towards the North 

Pole imitates a vertical end load in planar case. 
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3. Finite Element Analysis (FEA) 

 
To deduce the accurate motion of the beam going through 

spherical motion the beam is modeled in a FEA software package. The 

parametric angle co-efficient, CΘ, the characteristic radius factor, γ, 

and the parameterization limit, Θmax, are obtained from the results of 

the FEA model. A major challenge in building the model in FEA 

package is to apply loads on the beam such that there is no reaction 

load at the fixed end, P, (see Figure 10) and the free end, Q, of curved 

cantilever beam moves in a manner consistent with spherical 

kinematics. For this study we focus on the motion of the beam 

(kinematics), the reaction loads will be studied in later work.  

Development of the model is a paradox because the load 

direction depends on the displacement of the beam end, and the 

displacement of the beam end depends on the load direction. Thus, to 

ensure that there is no reaction load at the fixed end, P, we need to 

know the path (dotted line shown in Figure 10) followed by the beam 

end. The path followed is an arc on the sphere from the A frame (un-

deflected position Q) to the C or D frame (final position Q’’). 
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Figure 10: Path followed by beam the dotted line from Q to Q’’ 

When the beam PQ is taken as fixed at P, the A-frame of 

reference is fixed. The motion of the beam can also be described in the 

B-frame of reference such that the end Q of the beam is allowed to 

move in the b1-b2 plane. As a consequence of this the end P, of the 

beam now moves in the b1-b3 plane, that is, the beam undergoes 

spherical motion such that the ends P and Q move on orthogonal great 
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circles. To illustrate clearly, the comparison with the planar case is 

shown. 

 

(a) Planar Fixed reference frame                      (b) Planar Moving reference frame 

 

(c) Spherical Fixed reference frame               (d) Spherical Moving reference frame 

Figure 11: Reference frames used to model the spherical mechanism and its 

planar equivalent 

We can see from Figure 11(a) and 11(c) that if an input is given 

at the free end Q, the output obtained when the beam is fixed at P is a 

displacement at Q. On the other hand, in Figure 11(b) and 11(d) an 
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input is given at Q and the output is obtained at P. As we see from 

Figure 11, the difference between the fixed frame of reference and 

moving frame of reference is the location of the output displacements. 

In the planar case, when an input displacement of b is given the 

output obtained is o=l-a in both the fixed frame of reference, shown in 

Figure 11(a), and the moving frame of reference Figure 11(b). In the 

spherical case, when an input displacement of β is given, the output 

obtained is Φ=λ-α in both the fixed frame of reference, shown in 

Figure 11(c), and the moving frame of reference, shown in Figure 

11(d). Thus, the mechanisms are equivalent to each other and only 

the frame of reference has changed. It proves convenient to analyze 

the behavior of the flexible curved beam in a FEA model built to mimic 

the moving frame. In this frame of reference, we apply displacement 

loads at Q and measure the output displacement at P. The fixed frame 

of reference is the A frame in Figure 10 In order to get the spherical 

frame B.  

When the B-frame is observed in a moving frame of reference it 

coincides with the A-frame for all northward-pointing input 

displacements. The initial position is such that both the ends of the 

beam are in the b1-b3 plane. An input of displacement angle, β, is 

applied to the beam end Q. The motion of Q is a circular arc in b1-b2 

plane. The output obtained is the displacement angle Φ (about the y-
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axis of the O frame) observed at the other end P of the beam. The 

motion of this beam end, P, is a circular arc that lies in the b1-b3 plane. 

The mechanism shown in 11(d) is modeled in FEA software package. 

The ANSYS version 10.0, (ANSYS, 2006) FEA package was used. 

A major aspect of modeling in ANSYS is that it does not take inputs or 

outputs with respect to units. Hence the model itself has to be built in 

a single system of consistent units. Since this is a ‘kinematic’ model, 

the factors expected to affect the results would be dimensions of the 

curved beam and Modulus of Elasticity. Here the model dimensions 

were defined in millimetres (mm) and the modulus of elasticity in 

Newton per square millimetre (N/mm2). 

In this model we take the length of the rigid beam OP 

=1000mm, the radius of the arc PQ=1000mm. The Q end of the beam 

is always in the X-Y plane and its initial position for all arc-lengths of 

PQ, is Q(1000,0,0). The initial position of the end P varies for different 

arc-lengths and is given by P(R*cos(arclength),0,R*sin(arclength)). 

Where R is the radius of the arc (sphere) =1000mm and 

arclength is the angle created by the arc to the centre in radians. 

The mechanism is modeled such that the circular segment PQ is 

highly compliant and the straight segment OP is highly rigid. This is 

done by maintaining the modulus of elasticity of the compliant circular 

segment at 300N/mm2 and that of the rigid straight segment at 
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300,000 N/mm2. Various aspect ratios of the beam are obtained by 

varying the cross-section of the beam that is if an aspect ratio of 0.1 is 

desired then the thickness (or height h) of the beam is 1/10 th of the 

width b. When aspect ratio of the beam is 1 the beam has a square 

cross-section of sides 50mm, for successive values of aspect ratio the 

sides vary accordingly to obtain a rectangular cross-section of width b 

and height h given by h=aspect ratio * b as shown in Figure 12. 

 

Figure 12: Cross-section of beam for various aspect ratios 

This model is then meshed to define elements and nodes. 

Displacement loads are applied according to the boundary conditions 

described below. 

To apply the boundary conditions for the above model we denote 

the displacements in x, y and z directions by UX, UY and UZ and 
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rotations about x, y and z by ROTX, ROTY and ROTZ. Points O and P 

lie on the rigid straight segment and hence they are made to stay in 

the x-z plane and allowed to rotate about y-axis of O frame. The point 

O fixes the structure in space and hence all other degrees of freedom 

are constrained. The point Q is the end of the curved segment and 

hence it is made to lie in the x-y plane. 

The boundary conditions applied to the finite element model shown in 

Figure 13 are: 

Point O UX=0, UY=0, UZ=0, ROTX=0, ROTZ=0. 

Point P UY=0, 

Point Q UZ=0, ROTZ=β, ROTX=0, ROTY=0. 

 

Figure 13: Finite element model 



www.manaraa.com

 31

Rotational displacement loads, β, were applied at the Q end of 

the beam and analysis was conducted. For various inputs of β we get 

corresponding outputs of Φ=λ-α. The deflection θ0 of the neutral axis 

of the beam at beam end (that moves in b1-b2 plane) about the radial 

axis of the beam at the same beam end is also obtained as an output. 

The deflection of the beam is calculated from the rotation matrix 

generated by a pre-defined triad at the Q end of the beam. 

 Thus these outputs are noted for various inputs and this 

simulation is repeated for varying: 

a) Initial arc length λ b) Cross-section of the curved flexible 

beam. The results from FEA model were used to calculate the 

parametric angle co-efficient, Cθ, the characteristic radius factor, γ and 

θ0max. See Appendix C for a visual manual to conduct one simulation. A 

log file generated from one analysis (simulation) is then obtained from 

the file menu. This log file is then edited with new values of the 

parameters (aspect ratio and arc-length) and subsequently run in 

ANSYS by using an input command. Simulations were run for arc-

lengths ranging from angle of 4 degrees to 112 degrees in increments 

of 2 degrees and for each arclength aspect ratios varying from 0.1 to 1 

with increments of 0.1. The input displacement, β, is given such that it 

is equal to the angle created by the respective arc-length, that is, if an 
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arc-length of 90 degrees is to be analyzed then an input displacement 

of 90 degrees is applied.
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4. Parametric Approximation of the Curved Beam’s Deflection 

Path 

 

We follow Howell’s method (Howell 2001) for developing our 

parametric approximation of the curved beam’s deflection path. An 

acceptable value for the characteristic radius factor, γ, may be found 

by first determining the maximum acceptable percentage error in 

deflection. The value of γ that would allow the maximum pseudo-rigid-

body angle, Θ, while still satisfying the maximum error constraint is 

then determined. The problem may be formally stated as follows: Find 

the value of the characteristic radius factor γ which maximizes the 

pseudo-rigid-body angle, Θ, where Θ for a spherical mechanism is 

derived from Napier Rules. For right spherical triangle whose sides are 

γλ, η, and β, and Θ is the angle between γλ and η it can be shown that: 

        Θ= cottan)]-(1-sin[ βγλα  (See Appendix A) 

where  

φλα −=  

to get  

⎥
⎦

⎤
⎢
⎣

⎡
−−

=Θ −

)]1(sin[
tantan 1

γλα
β

                                              (4.1) 
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Equation (4.1) is valid for β< 90ο. 
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Θ −

γλη
γλ

β

cottan
sin

sin
tan 1

                                                    (4.2) 

Equation (4.2) is applicable for all values of β (See Appendix-

A), and is subject to the parametric constraint 

  

                  (4.3) 

where error/εe is the relative deflection error, and εe for a spherical 

mechanism is defined as the vector difference of deflected position of 

the flexible curved segment and the original un-deflected position. 

)0()/(/)( maxmax Θ<Θ<≤=Θ forerrorerrorg ee εε
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Figure 14: Deflection of curved segment 

The deflection of curved segment εe as shown in Figure 14 is 

obtained using finite element analysis software. For various values of 

β, the corresponding values of Φ are noted. These are then used to 

calculate the final position from rotation and transformation matrices. 

Finally the original co-ordinates of the beam end are subtracted from 

the final co-ordinates to obtain the deflection εe. 
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to get 

 

                         

                                              (4.5) 

 

 

and the deflection for the PRBM, εa, is given by the vector difference of 

deflected position of the PRBM and the original un-deflected position of 

the beam end Q. 
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Figure 15: Deflection of PRBM 

The vector difference between the estimated deflected position 

of PRBM and the original un-deflected position of beam end, Q, is 

calculated using the following transformations. 

 

From Figure 15 we have rRa
rrr

−=ε  

and rRR rr
=  where R is the rotation of the vector rr about the axis 

mr through angle Θ (Lai, Rubin and Krempl, 1993). 

 



www.manaraa.com

 38

)(sincos).)(cos1(),,( rmrmrmrmR rrrrrrrrr
×Θ+Θ+Θ−=Θ  

where,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

λγ

λγ

ˆsin
0

ˆcos
mr

   and   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
1

rr

 

 

which reduces to 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Θ−
Θ

Θ+Θ−
==

)cos1(ˆsinˆcos
sinˆsin

cos)cos1(ˆcos2

λγλγ
λγ

λγ
rRR rr

 

 

Therefore, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Θ−
Θ

−Θ+Θ−
=

)cos1(ˆsinˆcos
sinˆsin

1cos)cos1(ˆcos2

λγλγ
λγ

λγ
ε a
r

                                  (4.6) 

                                                                                            

error is simply defined as the vector difference between the final 

positions of the curved flexible segment and the pseudo-rigid body 

model. 
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The error in the deflection is calculated as 

( ) ( ) ( )[ ] 2/1222
azezayeyaxexaeerror εεεεεεεε −+−+−=−=

rr
 

                                                                                   (4.7) 

 

A parameter relative error, error/εe is defined to help in 

comparing with the planar flexible segment. 

 

e

ae

e

error
ε

εε
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r
−

=
                                                            (4.8) 

 

The value of the angular deflection of the beam’s end, θ0, at the 

point at which the error equals or exceeds an acceptable amount, is 

the maximum angular deflection of the beam’s end, or the 

parameterization limit Θmax. 
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5. Results and Discussion 

 
For a given value of aspect ratio, h/b, and arc-length, λ, one can 

find a  value of characteristic radius factor, γ and parametric angle co-

efficient, CΘ that best approximates the motion (position and 

orientation of beam at various input displacements) using the 

techniques described in the previous chapter. 

For example for h/b=1, and λ=90ο,  the final displacement of beam from 

the fixed end, α, and the rotation θ0 are found for a given input 

displacement of β. They are plotted against β as shown in Figure 16 

and Figure 17. 
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Figure 16: Final position of beam from fixed end α, v/s input displacement β 

 

Figure 17: Deflection of beam about neutral axis, θ0,v/s input displacement β 
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Then the values of γ and CΘ that gives the minimum relative 

error (0.05%) for the largest range of different guess of γ are found for 

maximum range of motion. 

CΘ is the parametric angle co-efficient, defined as the ratio of the 

maximum range of motion obtained, Θmax, in the pseudo-rigid body 

model to the ratio of the deflection of the beam about the neutral 

axis,θ0. 

The γ and CΘ obtained for all the simulations of various aspect 

ratios and arc lengths are plotted in Figure 18 and Figure 19 and in 

Figure 20 the maximum range of motion for the PRBM for the 

respective values of γ and CΘ. 

 

Figure 18: γ  v/s Arc-lengths showing various colors for aspect ratios 
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Figure 19: CΘ v/s Arc-lengths showing various colors for aspect ratios 

 

Figure 20: Θmax v/s Arc-lengths showing various colors for aspect ratios 
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These are graphs that are plotted for simulations which were run 

to obtain outputs at every one degree of the input displacement, 

β, that is, if the beam was given a total input displacement of 90 

degrees then 90 load-steps of one degree were solved. As a 

consequence not enough data points were obtained when the total 

input displacement, β was a small value, for example, if the beam was 

given a total input displacement of just 10 degrees then only 10 load-

steps were solved. Thus, the algorithm to process the outputs obtained 

from the simulations failed to process the data for arc-lengths ranging 

from 4 to 14 because the total input displacement, β, is given such that 

it is equal to the arc-length. Hence, the number of data points at an 

arc-length, were limited to the value of arc-length in degrees, that is, 

only 4 data points were obtained for an arc-length of 4 degrees.  

Moreover, from the graphs it can be seen that there is a lot of 

‘bouncing’ that is there is a ‘noise’ in the data. This clearly indicates 

that more data points are required to capture the behavior of the 

curved beams. 

Based on the inference of these graphs the simulations were re-run 

such that 200 load-steps are solved irrespective of the value of the 

input displacement, that is, for an input displacement of 4 degrees the 

beam was analyzed at an input displacement, β, of every 4/200 

degrees. These simulations were run for aspect ratios h/b=0.1, 0.4 
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and 0.7. These are then again plotted as shown in Figure 21, Figure 22 

and Figure 23. 

 

Figure 21: γ  v/s Arc-lengths, for 200 load-steps of input displacement 
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Figure 22: CΘ v/s Arc-lengths, for 200 load-steps of input displacement 



www.manaraa.com

 47

  

Figure 23: Θmax v/s Arc-lengths, for 200 load-steps of input displacement 

From Figures 21, 22 and 23 we see that there is no ‘bouncing’ or 

‘noise’ in the data, smooth curves are obtained. It is observed that this 

data is suitable to approximate the motion of the beam. An equation is 

fitted to the curve for the characteristic radius factor γ, and can be 

used to approximate the motion of a curved beam with the equivalent 

of vertical end load. A trend-line of second order polynomial for arc-

lengths ranging from 16 to 112 is fit individually for aspect ratios 

h/b=0.1, 0.4 and 0.7 and their equations are shown in Figure 24, 

Figure 25 and Figure 26. 
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Figure 24: Trend-line of γ, for aspect ratio 0.1 
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Figure 25: Trend-line of γ, for aspect ratio 0.4 
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Figure 26: Trend-line of γ, for aspect ratio 0.7 

 

Thus, at a given aspect ratio h/b and arc-length λ of curved 

beam we can substitute the values in the respective equation to find 

the corresponding characteristic radius factor γ for the spherical PRBM 

that best approximates the motion of the curved flexible beam. 
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6. Conclusion 

 
The first Pseudo-Rigid-Body Model (PRBM) for spherical 

mechanisms has been developed. The kinematics of a compliant 

curved beam and its rigid body equivalent were described. The 

procedure for analyzing the curved compliant beams in a FEM program 

was developed. Pseudo-rigid body parameters were calculated from 

FEA results. These parameters are the characteristic radius factor, γ, 

the parametric angle co-efficient CΘ and the parameterization limit 

Θmax. These values approach the values found in the planar case for 

small arc lengths, λ.
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Appendix A Spherical Triangles and Napier Rules 

Spherical Triangles 

                                   

 

Figure 27: Spherical triangles 

A spherical triangle is a figure formed on the surface of a sphere 

by three great circular arcs intersecting pair-wise in three vertices. The 

spherical triangle is the spherical analog of the planar triangle, and is 

sometimes called an Euler triangle (Wolfram, 2006). Let a spherical 

triangle have angles A, B, and C (measured in radians at the vertices 

along the surface of the sphere) and let the sphere on which the 

spherical triangle sits have radius R (Wolfram, 2006)  

Napier Rules 

Napier’s rules are used to derive the parameters required to analyze 

the bending of curved beam.  
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Appendix A (Continued) 

The derivation of parameters can be easily obtained from two 

simple rules discovered by John Napier (1550-1617), the inventor of 

logarithms. (http://www.angelfire.com/nt/navtrig/B2.html). As the 

right angle does not enter into the formulas, only five parts are 

considered. These are a, b, and the complements of A, B, and C (or 

90-A, 90-B, 90-c) which can be written A', B', and c'.  

                          If these five parts are arranged in the order in which 

they occur in the triangle, any part may be selected and called the 

middle part; then the two parts next to it are called adjacent parts, 

and the other two are called opposite parts. 

  

Figure 28: Five parts arranged in order of occurrence 

Napier’s rules are as follows: 1. The sine of the middle part 

equals the product of the tangents of the adjacent parts. 
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Appendix A (Continued) 

2. The sine of the middle part equals the product of the 

      cosines of the opposite parts. 

The right spherical triangle for the PRBM has the sides,  γλ, β and η. The 

right angle lies between the ‘sides’ β and η. Θ is the pseudo-rigid-body 

angle. ‘η’ is the angle opposite to η as shown in Figure 24 

 

 

Figure 29: Spherical right triangle 
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Appendix A (Continued) 

 

 

Figure 30: Five parts for PRBM right spherical triangle. 

Using Napier Rules the following equations can be obtained. 

)90tan(tan)90sin( Θ−=Θ− η  

Where )()( γλλφλη −−−=  

and φλα −=  

To get 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=Θ −

)]1(sin[
tantan 1

γλα
β
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Appendix A (Continued) 

At β=90o this equation fails to give a value of pseudo-rigid body 

angle, Θ, to overcome this, Θ is also expressed in an alternate form. 

From Napier Rules we get 

γλ
β

sin
sinsin =Θ  

and 

γλη cottancos =Θ  

To get 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Θ −

γλη
γλ

β

cottan
sin

sin
tan 1
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Appendix B Manual for FEA 

The following figures (31-54) show a step by step process to run 

a single simulation for a single load step. 

 

Figure 31: Activating Graphical User Interface (GUI) 
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Appendix B (Continued) 

 

Figure 32: Limiting the GUI options to structural preferences 
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Appendix B (Continued) 

 

Figure 33: Adding or defining new element types  
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Appendix B (Continued) 

 

Figure 34: Beam elements 
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Appendix B (Continued) 

 

Figure 35: Defining real constants for respective elements 
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Appendix B (Continued) 

 

Figure 36: Inputting area and moment of inertia values to elements 
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Appendix B (Continued) 

 

Figure 37: Defining material properties 
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Appendix B (Continued) 

 

Figure 38: Creating key-points on work-plane through GUI 
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Appendix B (Continued) 

 

Figure 39: Creating key-points using command line 
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Appendix B (Continued) 

 

Figure 40: Pan, zoom, rotate 
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Appendix B (Continued) 

 

Figure 41: Defining of orthogonal triad at beam end 
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Appendix B (Continued) 

 

Figure 42: Creating lines 
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Appendix B (Continued) 

 

Figure 43: Creating arcs 
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Appendix B (Continued) 

 

Figure 44: Meshing 
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Appendix B (Continued) 

 

Figure 45: Mesh attributes for line 
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Appendix B (Continued) 

 

Figure 46: Allocating specific material to mesh (elements) 
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Appendix B (Continued) 

 

Figure 47: Selecting analysis type 
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Appendix B (Continued) 

 

Figure 48: Large displacement analysis selected 
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Appendix B (Continued) 

 

Figure 49: Equation chosen solvers 
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Appendix B (Continued) 

 

Figure 50: Applying loads to the beam 
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Appendix B (Continued) 

 

Figure 51: Solve 
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Appendix B (Continued) 

 

Figure 52: During solve 
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Appendix B (Continued) 

 

Figure 53: Output 
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Appendix B (Continued) 

 

Figure 54: To get the log-file 

A log file is obtained and is modified to solve for 200 load steps 

at a given aspect ratio and arc-length as follows: 

!************************************ 

/CONFIG,NRES,10000 

/CWD,'C:\Documents and 

Settings\sjagirda\Directory200steps\arc90_asp0.1' 

/NOPR    

/PMETH,OFF,0 
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KEYW,PR_SET,1   

KEYW,PR_STRUC,1  

/GO  

!************************************   

/PREP7  

R=1000 

PI=acos(-1.) 

!************************************   

A1=2500.0 

Iy1=520833.333 

Iz1=520833.333 

E1=300000   

!************************************   

A2=   250.0000037252903 

Iy2= 520.8333566163981 

Iz2=   52083.33410943548 

E2= 300 

!************************************   

ET,1,BEAM4 

!*   

ET,2,BEAM4  



www.manaraa.com

 87

Appendix B (Continued) 

!*   

R,1,A1,Iy1,Iz1, , , ,    

RMORE, , , , , , ,   

!*   

R,2,A2,Iy2,Iz2, , , ,    

RMORE, , , , , , ,   

!*   

!*   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,E1  

MPDATA,PRXY,1,,0.35  

MPTEMP,,,,,,,,   

MPTEMP,1,0 

MPDATA,EX,2,,E2  

MPDATA,PRXY,2,,0.35 

!************************************ 

K,1,0,0,0,   

!************************************ 

arclength=90 

xcoor=R*cos(arclength*PI/180) 
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Appendix B (Continued) 

zcoor=R*sin(arclength*PI/180) 

K,2,xcoor,0,zcoor, 

 !************************************ 

K,3,1000,0,0, 

K,4,1050,0,0, 

K,5,1000,50,0, 

K,6,1000,0,-50, 

 /USER,  1 

/FOC,   1,   538.256940599    ,  -110.688686131    ,   475.000000000 

/REPLO   

/VIEW,  1, -0.246365419055    ,  0.245754775350    ,  

0.937501291032 

/ANG,   1,  -1.91248212175   

/REPLO   

/VIEW,  1, -0.378438950955    ,  0.367160066605    ,  

0.849692559630 

/ANG,   1,  -4.76219842328   

/REPLO   

K,7,950,0,0, 

/FOC,   1,   427.888273403    ,  -68.9410891494    ,   407.804103704 

/REPLO   
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Appendix B (Continued) 

/FOC,   1,   456.194825599    ,  -81.6519820718    ,   425.903867008 

/REPLO   

/VIEW,  1, -0.455467710156    ,  0.439135756168    ,  

0.774408776203 

/ANG,   1,  -7.33131293670   

/REPLO   

LSTR,       1,       2   

LSTR,       3,       4   

LSTR,       3,       5   

LSTR,       3,       6   

LSTR,       3,       7   

!*   

LARC,2,3,1,1000, 

FLST,5,5,4,ORDE,2   

FITEM,5,1    

FITEM,5,-5   

CM,_Y,LINE   

LSEL, , , ,P51X 

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   
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Appendix B (Continued) 

!*   

CMSEL,S,_Y1  

LATT,1,1,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,1,4,ORDE,1    

FITEM,5,1    

CM,_Y,LINE   

LSEL, , , ,P51X 

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,10, , , , ,1  

!*   

FLST,5,4,4,ORDE,2    

FITEM,5,2    

FITEM,5,-5   

CM,_Y,LINE   

LSEL, , , ,P51X 
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CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,1, , , , ,1   

!*   

FLST,2,5,4,ORDE,2    

FITEM,2,1    

FITEM,2,-5   

LMESH,P51X   

GPLOT    

CM,_Y,LINE  

LSEL, , , ,       6  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

!*   

CMSEL,S,_Y1  

LATT,2,2,2, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   
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!*   

FLST,5,1,4,ORDE,1    

FITEM,5,6    

CM,_Y,LINE   

LSEL, , , ,P51X 

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,100, , , , ,1 

!*   

LMESH,       6   

FINISH   

/SOL 

ANTYPE,0 

NLGEOM,1 

NSUBST,10,0,0    

OUTRES,ERASE 

OUTRES,NSOL,-10 

RESCONTRL,DEFINE,ALL,-10,1   

FLST,2,1,1,ORDE,1    

FITEM,2,1    
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!*   

!************************************   

/GO  

D,1, ,0, , , ,UX,UY,UZ,ROTX,ROTZ, 

FLST,2,1,1,ORDE,1    

FITEM,2,2    

!*   

/GO  

D,2, ,0, , , ,UY, , , , , 

FLST,2,1,1,ORDE,1    

FITEM,2,12   

!*   

!************************************   

/GO  

!************************************   

loadsteps=200 

*DO,step,1,loadsteps,1  

theta=step*arclength/200  

/GO  

DDELE,12,ALL 

!************************************   
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D,12, ,0, , , ,UZ, , , , ,  

FLST,2,1,1,ORDE,1    

FITEM,2,12   

                                    

dispx=-(R-(R*cos(theta*PI/180)))  

dispy=R*sin(theta*PI/180)  

                                    

D,12, ,dispx, , , ,UX, , , , ,   

FLST,2,1,1,ORDE,1    

FITEM,2,12   

!*   

/GO  

D,12, ,dispy, , , ,UY, , , , ,    

FLST,2,1,1,ORDE,1    

FITEM,2,12   

!*   

/GO  

D,12, ,theta*PI/180, , , ,ROTZ, , , , ,  

LSWRITE,step 

*ENDDO  

LSSOLVE,1,loadsteps    
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/STATUS,SOLU  

FINISH   

!************************************   

SAVE,'arc90_asp0.1','db','C:\DOCUME~1\SJAGIRDA\Directory200steps

\arc90_asp0.1'    

!************************************   

*do,i,1,200,1,  

/POST1   

/OUTPUT,arc90_asp0.1,txt,,APPEND  

SET,,,,,i,,, 

FLST,5,6,1,ORDE,4 

FITEM,5,1 

FITEM,5,-2 

FITEM,5,12  

FITEM,5,-15  

NSEL,S, , ,P51X  

PRNSOL,DOF,  

/OUT 

*ENDDO 

*do,i,1,200,1,  

/POST1   
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/OUTPUT,arc90_asp0.1,m,,APPEND  

SET,,,,,i,,, 

FLST,5,6,1,ORDE,4 

FITEM,5,1 

FITEM,5,-2 

FITEM,5,12  

FITEM,5,-15  

NSEL,S, , ,P51X  

PRNSOL,DOF,  

/OUT 

*ENDDO 

*do,i,1,200,1,  

/POST1   

/OUTPUT,arc90_asp0.1BETA,txt,,APPEND  

SET,,,,,i,,, 

FLST,5,6,1,ORDE,4 

NSEL,S, , ,12  

PRNSOL,ROT,Z  

/OUT 

*ENDDO 

*do,i,1,200,1,  
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/POST1   

/OUTPUT,arc90_asp0.1DISPX,txt,,APPEND  

SET,,,,,i,,, 

FLST,5,4,1,ORDE,2 

FITEM,5,12  

FITEM,5,-15  

NSEL,S, , ,P51X  

PRNSOL,U,X  

/OUT 

*ENDDO 

*do,i,1,200,1,  

/POST1   

/OUTPUT,arc90_asp0.1DISPY,txt,,APPEND  

SET,,,,,i,,, 

FLST,5,4,1,ORDE,2 

FITEM,5,12  

FITEM,5,-15  

NSEL,S, , ,P51X  

PRNSOL,U,Y  

/OUT 

*ENDDO 
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*do,i,1,200,1,  

/POST1   

/OUTPUT,arc90_asp0.1DISPZ,txt,,APPEND  

SET,,,,,i,,, 

FLST,5,4,1,ORDE,2 

FITEM,5,12  

FITEM,5,-15  

NSEL,S, , ,P51X  

PRNSOL,U,Z  

/OUT 

*ENDDO 

*do,i,1,200,1,  

/POST1   

/OUTPUT,arc90_asp0.1PHI,txt,,APPEND  

SET,,,,,i,,, 

NSEL,S, , ,2  

PRNSOL,ROT,Y  

/OUT 

*ENDDO 

FINISH 

/EOF 
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The respective parameters affected by change in aspect ratio like real 

constants are then changed in this log file and run separately to obtain 

respective outputs. The outputs are also limited to the Nodes of 

interest. 
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Appendix C Algorithms to Find γ 

Algorithm to find γ for load-steps at every one degree 

MATLAB Program is as follows. 

clear all 

start=16; 

finish=112; 

for arclength=start:2:finish 

    counter=(arclength+2-start)/2; 

    for aspect=0.1:0.1:1 

        countas=round(10*aspect); 

         

            %Input 

            str1 = []; 

            if round(aspect)==aspect, 

                str1='.0'; 

            end    

            string = 

['\arc',num2str(arclength),'_asp',num2str(aspect),str1,'ex.txt']; 
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                fid = fopen(['C:\Documents and 

Settings\sjagirda\output\arc',num2str(arclength),string]); 

                A = fread(fid); 

                fclose(fid); 

                G = native2unicode(A)'; 

                s_i = findstr('ROTZ', G); 

                s_f = findstr('MAXIMUM', G); 

                cr = native2unicode(10); 

                space = native2unicode(9); 

                 

                for j = 1:length(s_i) 

                                M = strtrim(G(s_i(j)+4:s_f(j)-1)); 

                                M = strrep(M, cr, space); 

                                M = str2num(M);  

                                beta(j) =M(3,7); 

                                PHI(j)  =M(2,6); 

                                B = [ cos(beta(j)) sin(beta(j)) 0 ; -sin(beta(j)) 

cos(beta(j)) 0 ; 0 0 1 ]; 

                                newcs = [ 50 0 0 ; 0 50 0 ; 0 0 -50 ]; 

                                dispatbeta=[ M(3,2)      M(3,3)     M(3,4) ;  

                                             M(4,2)      M(4,3)     M(4,4) ; 
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                                             M(5,2)      M(5,3)     M(5,4) ; 

                                             M(6,2)      M(6,3)     M(6,4) ]; 

                                orgcoord = [ 1000 0 0; 1050 0 0; 1000 50 0; 

1000 0 -50]; 

                                Finalcoord=dispatbeta+orgcoord; 

                                node12=[ 

Finalcoord(1,1:3);Finalcoord(1,1:3);Finalcoord(1,1:3);Finalcoord(1,1:

3)]; 

                                position_vectorbeta=Finalcoord - node12; 

                                position_vectorbeta(1,:) = []; 

                                A = B*newcs*inv(position_vectorbeta); 

                                thetaobeta(j)=acos(A(2,2)); 

                                 

                end 

                 

                %plot(PHI) 

                beta(j) =M(3,7); 

                PHI(j)  =M(2,6); 

                lambda=arclength*pi/180; 

                 

                BG=zeros(arclength,151); 
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                Beta=0; 

                for countk=1:1:301 

                    for countBETA=1:1:arclength 

                        oldbeta=Beta; 

                        newbeta=beta(1,countBETA); 

                        if newbeta==oldbeta 

                            countBETA=countBETA-1; 

                            break; 

                        else 

                            Beta=newbeta; 

                            gamma=(countk/2000+.7495); 

                            gamma_l = gamma*lambda; 

                            phi=PHI(1,countBETA); 

                            captheta = atan(tan(Beta)./sin((lambda-phi)-

(lambda-gamma_l))); 

                            abs_epsilon_e = sqrt((cos(Beta).*cos(phi)-

ones(size(Beta))).^2+(sin(Beta)).^2.*(cos(phi)).^2+(sin(phi)).^2); 

                            epsilon_ex = cos(Beta).*cos(phi)-1; 

                            epsilon_ey = sin(Beta); 

                            epsilon_ez = cos(Beta).*sin(phi); 
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Appendix C (Continued) 

                            epsilon_ax = (cos(gamma_l)).^2.*(1-

cos(captheta))+cos(captheta)-1; 

                            epsilon_ay = sin(captheta).*sin(gamma_l); 

                            epsilon_az = sin(gamma_l).*cos(gamma_l).*(1-

cos(captheta)); 

                            error = sqrt((epsilon_ex-epsilon_ax).^2 

+(epsilon_ey-epsilon_ay).^2 +(epsilon_ez-epsilon_az).^2); 

                            rel_error = error./abs_epsilon_e; 

             

                            captheta1(countBETA,countk)=captheta; 

                            abs_epsilon_e1(countBETA,countk) = 

abs_epsilon_e; 

                            epsilon_ex1(countBETA,countk) = epsilon_ex; 

                            epsilon_ey1(countBETA,countk) = epsilon_ey; 

                            epsilon_ez1(countBETA,countk) = epsilon_ez; 

                            epsilon_ax1(countBETA,countk) = epsilon_ax; 

                            epsilon_ay1(countBETA,countk) = epsilon_ay; 

                            epsilon_az1(countBETA,countk) = epsilon_az; 

                            error1(countBETA,countk)=error; 

                            rel_error1(countBETA,countk)=rel_error; 

                            if rel_error <= 0.005 
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Appendix C (Continued) 

                                error1(countBETA,countk)=error; 

                                rel_error1(countBETA,countk)=rel_error; 

                                BG(countBETA,countk)=countBETA*countk; 

                                betamax(countk) = Beta; 

                                maxfortheta(countk,countBETA)=Beta; 

                                 

                            else 

                                break 

                            end 

                        end 

                    end 

                end 

                [y,i] = max(betamax); 

                gammastar = (i/2000+.7495); 

                gammastar_l=lambda*gammastar; 

                [p,q]=max(maxfortheta); 

                [r,s]=max(q); 

                Beta=beta(1,s); 

                phi=PHI(1,s); 

                thetaostar=thetaobeta(1,s); 
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Appendix C (Continued) 

                capthetastar =atan(tan(Beta)./sin((lambda-phi)-(lambda-

gammastar_l))); 

                CTHETAstar=capthetastar/thetaostar; 

  

                GAMMA_MATRIX(counter,countas)=gammastar; 

                CAPTHETA_MATRIX(counter,countas)=capthetastar; 

                CTHETA_MATRIX(counter,countas)=CTHETAstar; 

  

    end 

  

end 

GAMMA_MATRIX; 

CTHETA_MATRIX; 

CAPTHETA_MATRIX; 

figure(1) 

plot(GAMMA_MATRIX) 

figure(2) 

plot(CTHETA_MATRIX) 

figure(3) 

plot(CAPTHETA_MATRIX) 
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Appendix C (Continued) 

Algorithm to find γ for 200 load-steps. 

clear all 

start=4; 

finish=112; 

for arclength=start:2:finish 

    arclength 

    counter=(arclength+2-start)/2; 

    asp=[0.1 0.4 0.7]; 

    for i=1:3 

        aspect=asp(i); 

        aspect; 

        countas=round(10*aspect); 

            %Input 

            str1 = []; 

            if round(aspect)==aspect, 

                str1='.0'; 

            end    

            string = 

['arc',num2str(arclength),'_asp',num2str(aspect),str1]; 
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Appendix C (Continued) 

                fid1 = fopen(['C:\Documents and 

Settings\sjagirda\Directory200steps\',string,'\',string,'BETA.txt']); 

                ABT = fread(fid1); 

                fclose(fid1); 

                GBT = native2unicode(ABT)'; 

                s_iB = findstr('ROTZ', GBT); 

                s_fB = findstr('MAXIMUM', GBT); 

                cr = native2unicode(10); 

                space = native2unicode(9); 

                 

                for j = 1:length(s_iB) 

                                BT = strtrim(GBT(s_iB(j)+4:s_fB(j)-1)); 

                                BT = strrep(BT, cr, space); 

                                BT = str2num(BT);  

                                beta(j) =BT(1,2); 

                end 

                 string =   

['arc',num2str(arclength),'_asp',num2str(aspect),str1]; 

                fid2 = fopen(['C:\Documents and 

Settings\sjagirda\Directory200steps\',string,'\',string,'PHI.txt']); 

                APH = fread(fid2); 
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Appendix C (Continued) 

                fclose(fid2); 

                GPH = native2unicode(APH)'; 

                s_iP = findstr('ROTY', GPH); 

                s_fP = findstr('MAXIMUM', GPH); 

                cr = native2unicode(10); 

                space = native2unicode(9); 

                 

                for j = 1:length(s_iP) 

                                PH = strtrim(GPH(s_iP(j)+4:s_fP(j)-1)); 

                                PH = strrep(PH, cr, space); 

                                PH = str2num(PH);  

                                PHI(j) =PH(1,2); 

                end 

                PHI(j); 

                fid3 = fopen(['C:\Documents and 

Settings\sjagirda\Directory200steps\',string,'\',string,'DISPX.txt']); 

                DISPXA = fread(fid3); 

                fclose(fid3); 

                DISPXG = native2unicode(DISPXA)'; 

                s_iX = findstr('UX', DISPXG); 

                s_fX = findstr('MAXIMUM', DISPXG); 
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Appendix C (Continued) 

                fid4 = fopen(['C:\Documents and 

Settings\sjagirda\Directory200steps\',string,'\',string,'DISPY.txt']); 

                DISPYA = fread(fid4); 

                fclose(fid4); 

                DISPYG = native2unicode(DISPYA)'; 

                s_iY = findstr('UY', DISPYG); 

                s_fY = findstr('MAXIMUM', DISPYG); 

                 

                fid5 = fopen(['C:\Documents and 

Settings\sjagirda\Directory200steps\',string,'\',string,'DISPZ.txt']); 

                DISPZA = fread(fid5); 

                fclose(fid5); 

                DISPZG = native2unicode(DISPZA)'; 

                s_iZ = findstr('UZ', DISPZG); 

                s_fZ = findstr('MAXIMUM', DISPZG); 

                 

                cr = native2unicode(10); 

                space = native2unicode(9); 

                 

                 

                for j = 1:length(s_iX) 



www.manaraa.com

 111

Appendix C (Continued) 

                                M = strtrim(DISPXG(s_iX(j)+4:s_fX(j)-1)); 

                                M = strrep(M, cr, space); 

                                M = str2num(M);  

                                NODE12DISPX =M(1,2); 

                                NODE13DISPX =M(2,2); 

                                NODE14DISPX =M(3,2); 

                                NODE15DISPX =M(4,2); 

                                 

                                N = strtrim(DISPYG(s_iY(j)+4:s_fY(j)-1)); 

                                N = strrep(N, cr, space); 

                                N = str2num(N);  

                                NODE12DISPY =N(1,2); 

                                NODE13DISPY =N(2,2); 

                                NODE14DISPY =N(3,2); 

                                NODE15DISPY =N(4,2); 

                                 

                                O = strtrim(DISPZG(s_iZ(j)+4:s_fZ(j)-1)); 

                                O = strrep(O, cr, space); 

                                O = str2num(O);  

                                NODE12DISPZ =O(1,2); 

                                NODE13DISPZ =O(2,2); 
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Appendix C (Continued) 

                                NODE14DISPZ =O(3,2); 

                                NODE15DISPZ =O(4,2); 

                                 

                                B = [ cos(beta(j)) sin(beta(j)) 0 ; -sin(beta(j)) 

cos(beta(j)) 0 ; 0 0 1 ]; 

                                newcs = [ 50 0 0 ; 0 50 0 ; 0 0 -50 ]; 

                                dispatbeta=[ NODE12DISPX      NODE12DISPY     

NODE12DISPZ ;  

                                             NODE13DISPX      NODE13DISPY     

NODE13DISPZ ; 

                                             NODE14DISPX      NODE14DISPY     

NODE14DISPZ ; 

                                             NODE15DISPX      NODE15DISPY     

NODE15DISPZ ]; 

                                orgcoord = [ 1000 0 0; 1050 0 0; 1000 50 0; 

1000 0 -50]; 

                                Finalcoord=dispatbeta+orgcoord; 

                                node12=[ 

Finalcoord(1,1:3);Finalcoord(1,1:3);Finalcoord(1,1:3);Finalcoord(1,1:

3)]; 

                                position_vectorbeta=Finalcoord - node12; 
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Appendix C (Continued) 

                                position_vectorbeta(1,:) = []; 

                                A = B*newcs*inv(position_vectorbeta); 

                                thetaobeta(j)=acos(A(2,2)); 

                                 

                end   

                lambda=arclength*pi/180; 

                 

                BG=zeros(arclength,151); 

                Beta=0; 

                for countk=1:1:501 

                    for countBETA=1:1:200 

                        oldbeta=Beta; 

                        newbeta=beta(1,countBETA); 

                        if newbeta==oldbeta 

                            countBETA=countBETA-1; 

                            break; 

                        else 

                            Beta=newbeta; 

                            gamma=(countk/2000+.7495); 

                            gamma_l = gamma*lambda; 

                            phi=PHI(1,countBETA); 
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Appendix C (Continued) 

                            sincaptheta=sin(Beta)./sin(gamma_l); 

                            coscaptheta=tan((lambda-phi)-(lambda-

gamma_l)).*cot(gamma_l); 

%                             captheta = atan(tan(Beta)./sin((lambda-phi)-

(lambda-gamma_l))); 

                            captheta = atan2(sincaptheta,coscaptheta); 

                             

                            abs_epsilon_e = sqrt((cos(Beta).*cos(phi)-

ones(size(Beta))).^2+(sin(Beta)).^2.*(cos(phi)).^2+(sin(phi)).^2); 

                            epsilon_ex = cos(Beta).*cos(phi)-1; 

                            epsilon_ey = sin(Beta); 

                            epsilon_ez = cos(Beta).*sin(phi); 

                            epsilon_ax = (cos(gamma_l)).^2.*(1-

cos(captheta))+cos(captheta)-1; 

                            epsilon_ay = sin(captheta).*sin(gamma_l); 

                            epsilon_az = sin(gamma_l).*cos(gamma_l).*(1-

cos(captheta)); 

                            error = sqrt((epsilon_ex-epsilon_ax).^2 

+(epsilon_ey-epsilon_ay).^2 +(epsilon_ez-epsilon_az).^2); 

                            rel_error = error./abs_epsilon_e; 
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Appendix C (Continued) 

                            captheta1(countBETA,countk)=captheta; 

                            abs_epsilon_e1(countBETA,countk) = 

abs_epsilon_e; 

                            epsilon_ex1(countBETA,countk) = epsilon_ex; 

                            epsilon_ey1(countBETA,countk) = epsilon_ey; 

                            epsilon_ez1(countBETA,countk) = epsilon_ez; 

                            epsilon_ax1(countBETA,countk) = epsilon_ax; 

                            epsilon_ay1(countBETA,countk) = epsilon_ay; 

                            epsilon_az1(countBETA,countk) = epsilon_az; 

                            error1(countBETA,countk)=error; 

                            rel_error1(countBETA,countk)=rel_error; 

                            if rel_error <= 0.005 

                                error1(countBETA,countk)=error; 

                                rel_error1(countBETA,countk)=rel_error; 

                                BG(countBETA,countk)=countBETA*countk; 

                                betamax(countk) = Beta; 

                                maxfortheta(countk,countBETA)=Beta; 

                                 

                            else 

                                break 

                            end 
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Appendix C (Continued) 

                        end 

                    end 

                end 

                 

                [y,i] = max(betamax); 

                gammastar = (i/2000+.7495); 

                gammastar_l=lambda*gammastar; 

                [p,q]=max(maxfortheta); 

                [r,s]=max(q); 

                Beta=beta(1,s); 

                phi=PHI(1,s); 

                thetaostar=thetaobeta(1,s); 

                 

                 

                sincapthetastar=sin(beta)./sin(gammastar_l); 

                coscapthetastar=tan((lambda-PHI)-(lambda-

gammastar_l)).*cot(gammastar_l); 

                capthetastar = atan2(sincapthetastar,coscapthetastar); 

%                 capthetastar =atan2(tan(beta),sin((lambda-PHI)-

(lambda-gammastar_l))); 

                [p2,s2] = polyfit(capthetastar(1:s),thetaobeta(1:s),1); 
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Appendix C (Continued) 

                CTHETAstar=p2(1); 

                 

                GAMMA_MATRIX(counter,countas)=gammastar; 

                

CAPTHETA_MATRIX(counter,countas)=capthetastar(s)*(180/pi); 

                CTHETA_MATRIX(counter,countas)=CTHETAstar; 

                 

    end 

    %plot([0.1:.1:1],GAMMA_MATRIX(arclength,:)); 

    %drawnow 

end 

GAMMA_MATRIX; 

CTHETA_MATRIX; 

CAPTHETA_MATRIX; 

figure(1) 

plot([4:2:112],GAMMA_MATRIX) 

xlabel('arc length , \lambda (degrees)') 

ylabel('Characteristic radius factor, \gamma') 

figure(2) 

plot([4:2:112],CTHETA_MATRIX) 

xlabel('arc length, \lambda (degrees)') 
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Appendix C (Continued) 

ylabel('Parametric angle coefficient, C_\Theta')  

figure(3) 

plot([4:2:112],CAPTHETA_MATRIX) 

xlabel('arc length, \lambda (degrees)') 

ylabel('Parameterization limit, \Theta_{max} (degrees) for the 

parametric angle coefficient, C_\Theta_{max}')   
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Appendix D Summary 

Table 1: Spherical PRBM 
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For small angles when the sphere has a very large radius the above 

formulas can be approximated to the planar case.  
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Appendix D (Continued) 

Table 2: Planar PRBM 
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